Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hazard Mater ; 441: 129915, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36113350

RESUMO

Unprecedented high concentrations of heavy metals have been detected in the groundwater at a zinc smelter in Seokpo, South Korea. The outflow of the contaminated groundwater into the nearby Nakdong River must be prevented by some means such as permeable reactive barrier (PRB). As a reactive material for injection-type PRB, we have tested sulfidated nanoscale zerovalent iron (S-nZVI) to assess its efficacy in remediating the groundwater from the smelter. The S-nZVI efficiently removed Zn, Ni, and Al in the groundwater, and neutralized the groundwater to pH > 6. Sulfidation of nZVI greatly increased the removal of Cd (99.8%) compared to that by nZVI (7.2%). MINEQL+ modeling and particle characterization were performed to elucidate the forms of heavy metals in the solution and on the surface of S-nZVI. Raman and XPS results suggested that FeS on the surface of S-nZVI reacted with Cd(II) and Zn(II), forming more-stable CdS and ZnS. Sequential application of NaHCO3 after S-nZVI treatment in a column setup was suited for the removal of remaining Zn and Fe as well as the reduction of microbial toxicity. This study guides to use of S-nZVI for in-situ remediation of cadmium-contaminated groundwater with other coexisting heavy metals from a zinc smelter.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Cádmio , Água Subterrânea/química , Ferro/química , Poluentes Químicos da Água/análise , Zinco
2.
Water Res ; 219: 118457, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537369

RESUMO

Reported herein is an investigation of the impact of water quality parameters on the formation of carbonate radical anion (CO3•-) and hydroxyl radical (HO•) in UV/sodium percarbonate (UV/SPC) system versus in UV/hydrogen peroxide (UV/H2O2) system for bisphenol A (BPA) degradation in water. Pathways of CO3•- oxidation of BPA were proposed in this study based on the evolution of direct transformation products of BPA. Observed in this study, the degradation of BPA in the UV/SPC system was slower than that in the UV/H2O2 system in the secondary effluents collected from a local wastewater treatment plant due to the significant impact of coexisting constituents in the matrices on the former system. Single water quality parameter (e.g., solution pH, common anion, or natural organic matter) affected radical formations and BPA degradation in the UV/SPC system in a way similar to that in the UV/H2O2 system. Namely, the rise of solution pH decreased the steady state concentration of HO• resulting in a decrease in the observed pseudo first-order rate constant of BPA (kobs). Chloride anion and sulfate anion played a negligible role over the examined concentrations; nitrate anion slightly suppressed the reaction at the concentration of 20 mM; bicarbonate anion decreased the steady state concentrations of both CO3•- and HO• exerting significant inhibition on BPA degradation. Different extents of HO• scavenging were observed for different types of natural organic matter in the order of fulvic acid > mixed NOM > humic acid. However, the impact was generally less pronounced on BPA degradation in the UV/SPC system than that in the UV/H2O2 system due to the existence of CO3•-. The results of this study provide new insights into the mechanism of CO3•- based oxidation and new scientific information regarding the impact of water quality parameters on BPA degradation in the sytems of UV/SPC and UV/H2O2 from the aspect of reactive radical formation, which have reference value for UV/SPC application in wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Compostos Benzidrílicos , Carbonatos , Peróxido de Hidrogênio , Cinética , Oxirredução , Fenóis , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Qualidade da Água
3.
Chemosphere ; 257: 127117, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480085

RESUMO

We report the potential of a sulfidized nanoscale zerovalent iron-persulfate (S-nZVI-PS) system for in situ chemical oxidation (ISCO) of groundwater pollutants. The study was conducted using a sand-filled rectangular box with a permeable reactive barrier of S-nZVI as a facsimile of the ISCO system. Synthetic water contaminated with a target pollutant (reactive black-5, RB-5) was continuously passed through the box. The injection of PS led to the complete removal of RB-5 and the system remained reactive for approximately 12 days. This system has a benefit that the oxidation products of S-nZVI (i.e., Fe3O4, Fe2O3, and FeSO4) can further activate PS to retain its reactivity. In a separate trial, this method exploited oxidation, reduction, adsorption and co-precipitation mechanisms that conspired to remove two different groundwater pollutants- arsenite and 1,4-dioxane. These results confirmed the utility of S-nZVI-PS as a mediator of ISCO processes to degrade groundwater pollutants.


Assuntos
Água Subterrânea/análise , Poluentes Químicos da Água/análise , Adsorção , Dioxanos , Ferro , Oxirredução , Água
4.
Nanomaterials (Basel) ; 9(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671607

RESUMO

Nanoscale zerovalent iron (nZVI) is the most widely used nanomaterial for environmental remediation. The impacts of nZVI on terrestrial organisms have been recently reported, and in particular, plant growth was promoted by nZVI treatment in various concentrations. Therefore, it is necessary to investigate the detailed physiological and biochemical responses of plants toward nZVI treatment for agricultural application. Here, the effects of nZVI on photosynthesis and related biochemical adaptation of soil-grown Arabidopsis thaliana were examined. After treatment with 500 mg nZVI/kg soil, the plant biomass increased by 38% through enhanced photosynthesis, which was confirmed by the gas-exchange system, carbon isotope ratio and chlorophyll content analysis. Besides, the iron uptake of the plant increased in roots and leaves. The magnetic property measurements and transmission electron microscopy showed that the transformed particles were accumulated in parts of the plant tissues. The accumulation of carbohydrates such as glucose, sucrose and starch increased by the enhanced photosynthesis, and photosynthetic-related inorganic nutrients such as phosphorus, manganese and zinc maintained homeostasis, according to the increased iron uptake. These findings suggest that nZVI has additional or alternative benefits as a nano-fertilizer and a promoter of CO2 uptake in plants.

5.
Sci Total Environ ; 689: 444-450, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279191

RESUMO

Hexabromocyclododecane (HBCD) is a persistent organic pollutant that accumulates in soil and sediments, however, it has been difficult to degrade HBCD with developed remediation technologies so far. In this study, degradation of HBCD by bimetallic iron-based nanoparticles (NPs) under both aqueous and soil conditions considering the effects of humic acids (HAs) and tobacco plant was investigated. In the aqueous solution, 99% of the total HBCD (15 mM) was transformed by Pd/nFe (1 g L-1) within 9 h of treatment and the HBCD debromination by Pd/nFe increased with the addition of HAs. In the soil system, 13%, 15%, 41% and 27% of the total HBCD were removed by treatments consisting of plant only, plant with HAs, plant with NPs and plant + NPs + HAs, respectively, compared to the HBCD removal in an unplanted soil. The 221-986 ng/g of HBCD were detected inside the plant after the treatments, and HAs showed considerable influence on the selective bioaccumulation of HBCD stereoisomers in the plant. Overall, this approach represents a meaningful attempt to develop an efficient and eco-friendly technology for HBCD removal, and it provides advantages for the sustainable remediation of recalcitrant emerging contaminants in soils.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Bromados/análise , Ferro/química , Nanopartículas Metálicas/química , Nicotiana/crescimento & desenvolvimento , Paládio/química , Poluentes do Solo/análise , Retardadores de Chama/análise , Substâncias Húmicas/análise
6.
Water Res ; 151: 413-422, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30622085

RESUMO

In this study, MnO2-coated Fe3O4 nanocomposite (Fe3O4@MnO2) was utilized to decompose H2O2 to remove dyes via advanced oxidation processes and adsorptive bubble separation (advanced ABS system). The combination of H2O2 and Fe3O4@MnO2 generated bubbles and formed a stable foam layer in the presence of a surfactant; sodium dodecyl sulfate (SDS) or cetyltrimethylammonium chloride (CTAC), separating dye from the solution. On the basis of radical quenching experiments, electron paramagnetic resonance and X-ray photoelectron spectroscopy analyses, it was confirmed that the MnO2 shell of catalyst was reduced to Mn2O3 by H2O2, generating radicals and oxygen gas for the removal of dyes. In the advanced ABS system, ∙OH and 1O2 were the main radical species and the O2 concentrations of 0.34 and 0.71 mM were increased in the solution and headspace, respectively. The advanced ABS system demonstrated a high removal efficiency of methylene blue (MB) (99.0%) and the removal rate increased with increasing amounts of components (H2O2, catalyst and SDS). Also, the advanced ABS system maintained high removal efficiency of MB at a wide pH range of 3-9. In addition to the anionic surfactant of SDS, CTAC was applied as a cationic surfactant for the advanced ABS of anionic dyes. Lastly, the scale-up system was applied to remediate dye-contaminated river water and industrial wastewater for possible practical applications.


Assuntos
Corantes , Nanocompostos , Adsorção , Peróxido de Hidrogênio , Azul de Metileno
7.
J Hazard Mater ; 325: 82-89, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27915102

RESUMO

This study evaluated the transformation of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) in soil under various conditions. Under anaerobic conditions for 21days, 34% of the total HBCD was reduced from rhizosphere soil containing humic acid, and 35% of the total HBCD was reduced from the non-rhizosphere soil; under aerobic conditions, 29% and 57-60% of the total HBCD were reduced from the same soil types after 40days. Three HBCD isomers (α-, ß-, and γ-HBCD) were separately analyzed for their isomeric effects on transformation. In the soils with added glucose as a carbon and energy source, the fraction of γ-HBCD was reduced due to the blooming microbial activity. The population of Gram-positive bacteria decreased during the aerobic treatments of HBCD, whereas the population of several Gram-negative bacteria (e.g., Brassia rhizosphere, Sphingomonas sp.) increased. Humic acid and glucose increased the HBCD removal efficiency and microbial diversity in both rhizosphere and non-rhizosphere soils.


Assuntos
Poluição Ambiental , Retardadores de Chama/metabolismo , Hidrocarbonetos Bromados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Adsorção , Aerobiose , Biotransformação , Glucose/química , Bactérias Gram-Negativas/metabolismo , Substâncias Húmicas , Rizosfera , Solo/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...